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Abstract- Classification of sea ice types using polarimetric 
radar is an area of considerable current interest and research. 
Several automatic methods have been developed to classify sea 
ice types from fully polarimetric synthetic aperture radar (SARI 
images, and these techniques are generally grouped into super- 
vised and unsupervised approaches. In previous work, supervised 
methods have been shown to yield higher accuracy than unsuper- 
vised techniques, but suffer from the need for human interaction 
to determine classes and training regions. In contrast, unsu- 
pervised methods determine classes automatically, but generally 
show limited ability to accurately divide terrain into natural 
classes. In this paper, a new classification technique is applied 
to determine sea ice types in polarimetric and multifrequency 
SAR images, utilizing an unsupervised neural network to provide 
automatic classification, and employing an iterative algorithm 
to improve the performance. The Learning Vector Quantization 
(LVQ) is first applied to the unsupervised classification of SAR 
images, and the results are compared with those of a conventional 
technique, the Migrating Means method. Results show that LVQ 
outperforms the Migrating Means method, but performance is 
still poor. An iterative algorithm is then applied where the 
SAR image is reclassified using the Maximum Likelihood (ML) 
classifier. It is shown that this algorithm converges, and sig- 
nificantly improves classification accuracy. The new algorithm 
successfully identifies first-year and multiyear sea ice regions in 
the images at three frequencies. The results show that L- and P- 
band images have similar characteristics, while the C-band image 
is substantially Merent. Classification based on single features 
is also carried out using LVQ and the iterative ML method. It is 
found that the fully polarimetric classification provides a higher 
accuracy than those based on a single feature. The significance 
of multilook classification is demonstrated by comparing the 
results obtained using four-look and single-look classifications. 
The results show the effect of multilook classification on reducing 
the speckle in the classified image. 
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I. INTRODUCTION 
EA ice covers a significant percentage of the Ocean sur- S face, including many areas of special interest to a variety 

of groups. Monitoring the spatial and temporal variations of 
sea ice is important to industries involved in the exploration 
for and transportation of mineral and petroleum resources in 
the polar regions. Military vessels navigating in polar seas are 
likely to be safer if they have access to information about the 
thickness of the ice they will encounter and the dynamics of 
that ice on both short and long term bases. In addition, the 
scientific community is interested in mapping the distribution 
of sea ice and sensing its properties because of its influence 
in oceadatmosphere heat exchange [ 11. 

The use of microwave frequencies in the remote sensing 
of sea ice is extremely useful, because it is unaffected by 
meteorological conditions encountered in the polar regions. 
The maximum ice extent occurs during the local winter period 
when solar illumination is severly limited, thus, making optical 
sensors at best marginally useful. In addition, in the summer 
season, haze cover is fairly common. These factors make 
microwave SAR image classification very important for many 
applications [ 11. 

There have been a number of attempts to measure the 
scattering properties of sea ice and devise approaches to 
classify sea ice data. In particular, during the 1989 Coordinated 
Eastern Arctic Experiment (CEAREX) and pre-ERS-1 Sea- 
sonal Ice Zone Experiment ( S E X  89), a variety of data was 
collected using polarimetric SAR, and this data was analyzed 
by numerous groups [31-[51. 

Currently the interpretation of sea ice images is based on 
experience acquired by the image interpreters, and, to a lesser 
degree, on experimental measurements and theoretical results. 
The availability of automatic image classification algorithms, 
however, would reduce the reliance on manual photo interpre- 
tation, and would improve the consistency of such work. 

Image classification algorithms are often grouped into super- 
vised and unsupervised approaches. For quantitative analyses 
of remote sensing data, it is the former which has found more 
frequent use and yielded higher accuracy (shown when applied 
to SAR images of the San Francisco Bay area [2]). Exam- 
ples of supervised classification include Maximum Likelihood 
(ML) and the minimum distance classifiers [6], [7], both of 
which have been applied to single feature (e.g. total power, 
IHH2 1,  IVV2 I etc.) and polarimetric or multifrequency imageIy 
obtained from radar and optical sensors. These supervised 
algorithms train the classifier using measured exemplars for 
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extraction of estimates of relevant statistics or parameters for 
each class. As such, it is difficult to achieve real-time or 
automatic operation with supervised classifiers, since operator 
intervention is required to supply the number and characteris- 
tics of the classes, or to designate training regions of known 
sea ice type from which the characteristics of each class may 
be determined. 

In contrast, unsupervised classification requires no specifica- 
tion of training regions, and automatically classifies the images 
using algorithms which utilize only the information contained 
in the measured data itself. Classification is accomplished by 
identifying clusters of the measured feature vectors, and by 
designating each distinct cluster as a new class. This automatic 
operation makes unsupervised classifiers preferable in many 
applications, particularly those in which real time processing is 
required. The Migrating Means clustering method (also known 
as the ISODATA method) is a popular unsupervised scheme 
[8], and has been applied to many images obtained by optical 
or infrared sensors. Its use in sea ice classification, however, 
has been mainly as a preprocessor to supervised classification 
techniques, reducing the requirements on the image analyst. 
In addition, for microwave images, only a few examples of 
unsupervised methods have been reported and these did not use 
purely statistical methods, but instead employed knowledge of 
the scattering properties of the terrain. References [9], [lo] 
compared the polarization state of the received wave to that 
of the transmitted wave in order to deduce the properties of the 
scatterer, and classified polarimetric SAR images based on the 
general properties of the Stokes parameters. The performance 
of these unsupervised algorithms was good in some regions, 
but unsatisfactory overall. 

One alternative to the above conventional, methods is a 
group of classifiers based on the use of neural networks, 
which has recently received considerable interest [l I]. For 
a number of classification problems, neural networks have 
been applied and compared to conventional classifiers, and 
the results have shown that the accuracy of the neural network 
approach is equivalent to or slightly better than conventional 
methods. Multilayer Perceptron and conventional classifiers 
were compared [12]-[I41 in the problem of image classi- 
fication. In all of these applications, neural networks have 
shown advantages over conventional techniques but as with 
the conventional classifiers, supervised neural network ap- 
proaches have outperformed unsupervised methods, and, thus, 
the former have been more extensively studied. Because of 
the advantages of unsupervised techniques in automatic and 
real-time classification, it is of interest to further improve 
unsupervised neural network classifiers, and to overcome their 
shortcomings in sea ice classification applications. 

In this paper, an unsupervised neural network method is 
applied to the classification of polarimetric SAR data of sea 
ice. The characteristics of the sea ice data used in this paper are 
first discussed briefly. A description of both the conventional 
and neural network unsupervised classification algorithms is 
also given. The unsupervised methods of Migrating Means 
and LVQ are then applied to the sea ice image. LVQ is shown 
to have better performance than the Migrating Means method, 
but the performance of both is unsatisfactory. To overcome this 
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poor performance, an iterative method, whereby the image is 
first classified by an unsupervised neural network and then 
reclassified by the ML method, is introduced, and applied 
to the sea ice data. It is shown that this algorithm provides 
superior performance when compared with stand alone un- 
supervised neural network classifiers, while preserving the 
advantages inherent in the automatic operation of unsupervised 
algorithms. The classified images at three frequencies are then 
analyzed from physical and mathematical viewpoints using 
the polarimetric statistics of the sea ice images. Single feature 
classifications are examined and the results are compared with 
those obtained by fully polarimetric classification. The effects 
of multilook classification on the reduction of speckle effects 
are also demonstrated by comparing the results obtained using 
four-look and single-look classifications. 

11. CONVENTIONAL SEA ICE CLASSIFICATION 

A. Sea Ice Datu 
In terms of development, sea ice can be roughly categorized 

into five types: new ice, nilas, young ice, first-year (FY) ice, 
and old ice or multiyear (MY) ice. The first three types are 
usually less than 30 cm in thickness and represent different 
stages of development of sea ice into first-year ice. After 
the formation of these thin ice types, the ice is subject to 
temperature changes, compressive and shearing forces, surface 
currents, and wind shear. These factors result in significant 
structural changes, such as ridge formation, breaking, and 
changes in thickness and surface roughness, which modifies 
radar return significantly [ 11. 

FY ice has thickness in the range 30 cm-2 m. In contrast, 
MY ice, which by definition has survived at least one summer 
season, has a typical thickness of more than 2 m. These thick- 
nesses are comparable to the penetration depths at microwave 
frequencies, so it is effective to use multifrequency radar for 
observing sea ice at different depths [l]. 

The image used in this paper is from the Beaufort sea, and 
the data was collected simultaneously at C-, L-, and P-bands 
(5.4, 1.25, and 0.4 GHz) by the multifrequency multipolar- 
ization SAR installed on the NASMJPL DC-8 aircraft [ 5 ] .  
This image was acquired in March 1988, during which Arctic 
winter conditions prevailed in the Beaufort Sea. A mixture of 
FY and MY ice of various ages can be observed in the image. 
Under these weather conditions, almost no open water and 
thin ice are apparent. As a result the following investigations 
have been limited to classification of two or three types of ice. 
The original image contains 781 pixels in the range direction, 
and 4096 in cross range, and the resolution of each pixel is 
approximately 3 meter in azimuth (single look) and 6.6 meter 
in slant range. Only one quarter in azimuth direction of the 
image is processed for the classification, and, thus, the size of 
the processed image is approximately 5 km in range and 3 km 
in azimuth. The measurements are fully polarimetric resulting 
in 5 real quantities for each data sample (magnitudes of HH, 
VV, and HV, and the relative phases of VV and HV with 
respect to HH) at each frequency. 
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B. Conventional Unsupervised ClassiJication Algorithm 
Unsupervised classifiers do not rely on training data for 

each class, but instead attempt to group the data set into 
classes which exhibit similar behavior in the multidimensional 
space of the observed feature vector. These methods are 
often referred to as clustering analysis. Because unsupervised 
classification utilizes very little a priori information or specific 
physical characteristics of the data, it generally yields poorer 
performance than supervised methods. It is often preferable, 
however, because it can operate automatically, exhibits faster 
processing speed, and does not require the specification of 
information which may not be readily available. 

A common widely used unsupervised technique is the Mi- 
grating Means method or Isodata algorithm [SI. This technique 
is an iterative procedure which estimates reasonable cluster 
centers by moving each pixel from one cluster to another in 
such a way that a quadratic distance error is reduced at each 
step. This algorithm has been used for many remotely sensed 
images and has given fairly satisfactory results [SI. 

111. NEURAL NETWORK CLASSIFIER 
Neural networks are highly parallel networks with coupling 

between computational elements, or nodes. The resulting struc- 
tures represent systems composed of many simple processing 
elements operating in parallel, whose function is determined 
by network structure, connection weights, and node function. 
These structures have been investigated in order to simulate 
human sensors and intelligence. 

More recently, neural networks have been applied to a 
number of image classification problems, including automatic 
target recognition and multisensor fusion, and have shown 
considerable success in matching and sometimes exceeding the 
performance of conventional algorithms for these applications 

In this paper, the most successful unsupervised algorithm, 
LVQ, was utilized to classify sea ice images. LVQ, however, 
needs modification to adapt it to image segmentation problems, 
therefore its modification along with its original algorithm is 
briefly presented here. In addition, to improve the accuracy 
of unsupervised classification, a new approach utilizing an 
iterative ML method developed by [2] is described briefly. 

~ 1 .  

A. ModiJied Learning Vector Quantization (LVQ) 
LVQ which was proposed in [16] is an improved version 

of general vector quantization, and was originally a super- 
vised method. The algorithm uses reference vectors in the 
hyperspace of the input feature vectors as training classes. 
Classification is accomplished by adjusting the reference vec- 
tors during training, such that boundaries determined by the 
minimum Euclidean distance from reference vectors separate 
the feature space into clustered regions. The details of the 
algorithm can be found in [2]. 

B. Iterative ML Method 
This method uses LVQ to form initial clusters, and then 

trains the ML classifier using a training data set first clas- 

sified by the LVQ unsupervised classifier. The process is 
then repeated iteratively, training a second ML classifier 
using data classified by first and so on. The ML classifier 
implicitly assumes gaussian statistics, but the overall method 
is unsupervised because the mean and covariance information 
can be obtained automatically from exemplars created by the 
clustering initially performed by the LVQ classifier. 

This algorithm resembles the Migrating Means method 
in that the statistical measures are calculated iteratively. In 
the case of the Migrating Means method, mean values are 
calculated for each class and the Euclidean distance is uti- 
lized as a metric for classification. In contrast, however, 
this new algorithm employs higher order statistics calculating 
covariance matrices and utilizing the ML distance measure 
for classification. This algorithm converges in the same way 
as that of the Migrating Means method. The details of the 
algorithm can be found in [2]. 

Iv .  APPLICATION TO SEA ICE IMAGERY 
In this section, the conventional neural network and new 

iterative unsupervised classifiers are applied to sea ice imagery 
typical of that described in Section 11. Three classes were 
chosen from the image for each frequency band. Because the 
penetration depth at each frequency is different, it is possible 
that the separability of the classes of the image can be different 
at each frequency. The surface and upper layer of ice can be 
seen from C-band images, while intemal ice structures can be 
discerned in L-band and P-band images. In this case, however, 
it was found that each image has the same categories of FY ice, 
MY ice, and Boundary area, although the distribution of the 
classes in the image are different depending on frequencies. 
Boundary area includes ridges and cracks between FY ice 
and MY ice. The areas selected for computing confusion 
matrices and measuring accuracies for each class are shown 
in Fig. 1. Homogeneous areas could not be found in the 
Boundary region, hence, the calculated probability of correct 
classification should be considered only as an indication of 
the performance of the classifiers and should not be used as 
a measure of the absolute accuracy. The final evaluation of 
the achievable accuracies should be evaluated by comparing 
the classification maps with field measurements which are not 
available in this case. 

To reduce the speckle effects, multilook averaging was ap- 
plied before classification. The following polarimetric feature 
vector which can be deduced from the elements of Mueller 
matrix [ 171 is used in the following classification processes: 

X =(IHH.HH*(,IHV.HV*I, IVV.VV*I, 
Re {HH . HV*}, Im {HH . HV*}, 
Re {HH . VV*}, Im {HH . VV*}, 
Re {HV . VV*}, Im {HV . VV*}). (1) 

Averaging the above vector over several pixels yields an 
averaged feature vector. Classification based on the averaged 
feature vector is referred to as the multilook classification. 

Classification is carried out for the data collected at each 
frequency band and the results are compared with each other. 
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Terrain Class LVQ 

Class 1 

Class 2 

Class 1 Class 2 Claps 3 

.994 .006 ,000 (FY) 

143 

LVQ + ML 
Class 1 Class 2 Class 3 

,961 ,039 ,000 

Fig. 1. Testing regions selected from Beaufort sea. From upper box to lower 
box: MY ice, FY ice, and Boundary region. 

Terrainclass I LVQ 
I Class 1 I Class 2 I Claps 311 

C1r.a 1 I I I II 

TABLE I 
CONFUSION MATIRX USING THE MIGRATING MEANS METHOD (C-BAND) 

Terrain Class 1 Migrating Means (C-band) 
I Class 1 I Class 2 I Class 3 

Class 1 I I I 

I LVQ + ML 
Class 1 I Class 2 I Class 3 

I I 

Class 2 

Class 3 
(BOUNDARY) ,806 

Total Accuracv 49.1% 

. 
.994 .006 ,000 (FY) 

Class 2 I I I II 

TABLE I1 
CONFUSION MATRIX USlNG THE MIGRATING MEANS METHOD (L- AND P-BAND) 

,961 I ,039 I ,000 
I I 

Terrain Class I Migrating Means (L-band) I Migrating Means (P-band) 
I Class 1 I Class 2 I Class 3 I Class 1 I Class 2 I Class 3 
I I I I I I 

(MY) 
Class 3 
(BOUNDARY) 

Total Accuracy 

1 (FY) I .011 1 ,989 I .:ill 1 000 1 1.000 1 .I 1 
Class 2 
(MY) ,028 .972 ,025 ,975 ,000 

Class 3 
(BOUNDARY) ,197 .114 ,689 ,147 258 

Total Accuracv 55.7% 63 6% 

642 350 008 333 I 611 I 056 

144 133 722 044 195 761 
68 9% 77 8% 

Classification using all three frequency bands simultaneously 
is in theory more effective, however, can not be performed 
here due to the unsatisfactory registration between each of the 
images. 

A. Classification by Migrating Means Method 
The Migrating Means method, which has previously been 

found to be the most effective among conventional methods [2]  
was first investigated. This algorithm was iterated until the re- 
sulting difference of means between successive iterations was 
less than 0.01. Multilook averaging was employed to stabilize 
the training procedure and was performed over 512 pixels (32 
in azimuth and 16 in range). It was found that approximately 
10 iterations were required to obtain convergence. Then in 
the classification phase, data averaged over every four looks 
in azimuth were classified. The performance of the Migrating 
Means method was very poor as shown in the results in Tables 
I and I1 for C-, L-, and P-band. Most of the pixels were 
classified into two classes in the same way as in [2 ] .  

TABLE I11 
CONFUSION MATRIX USING THE LVQ AND ITERATIVE ML METHOD (C-BAND) 

Class 2 

Class 3 
(BOUNDARY) 

Total Accuracy 

TABLE IV 
CONFUSION MATRIX Usmc THE LVQ AND ITERATIVE ML METHOD (L-BAND) 

TABLE V 
CONFUSION MATRIX USING THE LVQ AND ITERATIVE ML METHOD (P-BAND) 

B. Classification by LVQ and Iterative ML Method 
Next, LVQ, which was previously found to be the best 

algorithm for the classification of San Francisco Bay SAR 
images in [ 2 ] ,  was applied. The learning gain was set to 
0.005, the same value used in [ 2 ] ,  and four-look averaging (in 
azimuth) was performed before the classification. The results 
in Tables 111-V indicate that LVQ worked much better than 
the Migrating Means method. 

Finally, the iterative ML method was applied to the results 
of LVQ. Iteration was performed until the resulting difference 
of the confusion matrix calculated for testing regions between 
successive iterations was zero, while 15-19 iterations were 
required to obtain this convergence. The confusion matrices 
obtained by the iterative ML method for C-, L-, and P-band are 
shown in Tables 111-V, respectively, along with those of LVQ 
alone. The classified images obtained using LVQ alone and 
LVQ with the iterative ML method are shown in Figs. 2 and 
3. FY ice, MY ice, and Boundary region are color-coded by 
blue, green, and red, respectively. The images were classified 
with four-look averaging. 

The iterative ML method proved to be particularly effective 
in the P-band image. The accuracy improved by 8.9% after 
the iterative method was applied. It is difficult to identify 
MY ice from the original black-and-white image and the 
image processed by LVQ, but after the iterative ML method 
is applied, MY ice can be easily identified. 

In the C-band image, the total accuracy did not change 
as significantly and it can be seen that a greater number 
of the pixels in the lower part of the image were correctly 
classified as MY ice. FY ice was also classified correctly, 
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the brightness. One is that MY ice has a rougher surface 
compared to other regions, therefore, leading to a stronger 
surface scattering. The difference of the roughness between 
FY and MY may be so large that even from inspection of the 
original unclassified image, it is relatively easy to distinguish 
FY and MY. However, the Boundary region is covered by 
another layer of ice, and, hence, can not be seen at C-band. 
The other factor is that MY ice has more contribution from 
volume scattering due to the lower loss in the MY ice, which 
contains more air bubbles and less brine inclusions than the 
N ice. 

In contrast, the L- and P-band images show penetration of 
the surface. For these frequencies it is difficult to distinguish 
ice types from the original grey-level of the HH images, but 
the new algorithm clearly classified them. It is known that MY 
ice floes tend to have more rounded edges and pressure ridges 
are formed in the lower part of the ice where the ice shears 
or undergoes compression [ 11. These ridges are represented 
by Boundary regions in this experiment. The ridges would 
act like comer reflectors, resulting in a strong reflection. Note 
that the texture of ridges in the FY ice is found to be finer 
than that of MY ice. In addition, there seems to be one small 
water region which is not surrounded by Boundary region at 
all in upper left part of the image. This region is classified as 
FY ice in all the images and does not contain any Boundary 
region. However, it was classified as FY ice, because the area 
was too small to merit a fourth class. There are some regions 
which are classified as FY ice or Boundary in C-band image, 
but as MY ice in L- and P-band images. It is expected that 
those are refrozen regions where only the surface of MY ice 
was melted and frozen again. In the refrozen area, the surface 
would be flat, because it was newly formed, but the intemal 
structure would be the same as MY ice. 

Fig. 2. LVQ classification of Beaufort sea ice Red: Boundary, Green: MY, 
and Blue: FY (from left to right, P-, L, and C-band images). 

Fig. 3. LVQ and iterative ML classification of Beaufort sea ice Red: Bound- 
ary, Green: MY, and Blue: Ey (from left to right, P-, L-, and C-band 
images). 

and the boundary of each class looks more well-defined after 
the iteration process. The L-band image does not change 
very much even after the iterative ML method. It shows that 
LVQ method worked very well for this case. It should be 
noted that L-band and P-band images have similar textures 
after the iteration, although they look very different initially. 
Considering that the original two images have similar textures, 
this result shows that the iterative ML method correctly 
acquired the statistics and converged to a similar point with 
each image. Note that the upper part of the image was 
misclassified as Boundary region. This error is due to the 
higher backscatter arising from the small incidence angle 
in this region. This problem can be corrected by using a 
normalization technique [ 101, but it was not implemented here. 

By combining images obtained at different frequencies, it 
is easier to identify each sea ice class. From the classified 
images, it is seen that the L-band image and the P-band image 
contain similar information, but there is a large difference 
in textures between the C-band image and the L- or P-band 
images. From the C-band image the MY ice appears much 
brighter. Two factors may contribute to this difference of 

C. Analysis 
The covariance matrix of each class can be analyzed and 

the way in which each factor contributes to the classification 
examined. The general form of the polarimetric covariance 
matrix can be expressed as 

where j represents the class parameters, and 

a = E[IHH12] 
e = E[IHV12]/a 

Y = E[lVVl21/. 
E[HH.  VV*] 

a f i  
P =  

E[HH.  HV*] 
a& 

P =  
E[HV.  VV*] 

aJer . 5 =  
E[HV.  VV*] 

aJer . 5 =  

(7) 

The parameters, p , P ,  and 5 are the complex correlation 
coefficients between the polarimetric channels, y is the ratio 

I 
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TABLE VI 
COVARIANCE PARAMETERS (C-BAND) 

TABLE VI1 

Covariance Parameter I FY I MY ]BOUNDARY 

COVARIANCE PARAMETERS (L-BAND) 

I 0.00000 I 6.91202 I 13.10811 

TABLE VI11 
COVAMANCE PARAMETERS (P-BAND) 

of average VV power to the average HH power, and e is 
the depolarization ratio within the image. These covariance 
parameters for each class after the iterative ML method are 
shown in Tables VI-VI11 for C-, L-, and P-band, respectively. 
(T is normalized by its value of the FY ice, Le., (T of the FY 
ice is set to 0 dB. 

Covariance parameters of L-band and P-band images are 
similar, indicating that the scattering from sea ice at L-band 
and P-band is contributed by similar scattering sources. In the 
C- and P-band images, the parameters p and < are relatively 
small as expected from sea ice with azimuthally symmetric 
random inclusions [18]. In the L-band image, those two 
parameters are large, as perhaps due to the couplings between 
HH and HV, and VV and HV channels in the radar. 

It is noted that the VV return of MY ice has almost the 
same variance as HH at every frequency, while the VV return 
of FY ice has much smaller variance than HH at C-band and 
the same variance at L- and P-band. This result suggests that 
FY ice has a different feature from MY ice at the surface, but 
has a similar signature as that of MY ice at the bottom. 

From the covariance matrix, the large difference in 0 and 
the small difference of other parameters among classes indicate 
that (T would dominate the classification, especially in L- and 

TABLE IX 
CONFUSION MATRIX (CLASSIFICATION BASED ON IHHI2, C-BAND) 

TABLE X 

P-band images. To examine how the (T component contributes 
to the classification, single feature classification using only 
(T was performed by the LVQ and iterative ML method. To 
reduce the speckle effects, four-look averaging was again 
performed. Hence the Gamma distribution of (9) was assumed 
for the averaged intensity for the ML classification, 

where 

and N is the number of looks. The results obtained by single 
feature classification are shown in Tables IX and X. For L- and 
P-band images, (T is found to be very important. The accuracy 
of the single feature classification was only 0.2% less than for 
L-band image and 3% for P-band image compared to those of 
fully polarimetric classification. In contrast, the classification 
accuracy for C-band image was more than 10% worse than 
that of fully polarimetric case. This result seems to indicate 
that information other than the intensity is significant in the 
C-band image. This significance is clear from the processed 
image shown in Fig. 4. In the image classified by the single- 
feature, the lower portion of MY ice is poorly classified, while 
in the image classified from the fully polarimetric data, it is 
correctly classified. 

Single feature classifications were also done using other 
features, IHVI2 and IVVI2, to evaluate the contribution of 
each parameter to the classification. The accuracies of these 
single feature classifications are summarized in Table XI. For 
the C-  and P-band data, the accuracy using IHVI2 is poor, and 
accuracy using JVVI2 is comparable to that using JHHI2. At 
L-band, the correlation between HH and HV is large, hence, 
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0.  
0 .  
0 .  
0. 

Fig. 4. 
Green: MY, and Blue: FY (from left to right, P-, L, and C-band images). 

Single-feature classification of Beaufort sea ice Red: Boundary, 

TABLE XI 
CLASSIFICATION ACCURACIES BASED ON SINGLE FEATURES 

1 Frequency Band I IHH12 I lHV12 I IVVI’ 
11 C-band I 52.4% 154.7% 156.1% 11 

L-band 
P-band 

I 75.1% I 71.4% 1 74.1% 
I 74.8% I 62.5% I 72.2% 

single feature classification using (HVI2 performs almost as 
well as that using IHH1’. 

In addition to covariance parameters, polarization signatures 
are examined to visualize the scattering characteristics. In 
measuring the magnitude and phase at four polarization, it 
is possible to construct the polarization behavior for every 
resolution element of an image. Figs. 5 and 6 show the 
polarization signatures of FY and MY at C-band, which were 
found to show interesting features. 

From Fig. 5 ,  it is shown that there are three small peaks at 
HH and VV linear copolarized combinations. Each of these 
small peaks has equivalent power in a uniform rough surface 
signature. Minimums occur at right- or left-handed circular 
polarizations, indicating that most of the scattered returns are 
highly polarized. The fact that the proportion of random or 
unpolarized waves is small is due to small cross-polarization. 

The copolarized signature of MY ice shows a different 
pattem. There is a peak at VV linear copolarization which 
extends toward HH linear copolarizations. HH power retum 
is relatively lower, but the minimum points again appear at 
circular polarizations. Note that the absolute pedestal height 
in the MY ice signature is due to the cross-polarization 
component which may be contributed by the relatively large 
volume scattering from the air bubbles. It was found that the 
signature of Boundary region also showed similar features as 
FY ice. 

D. Effects of Multilook 
The effects of multilook averaging on the classifier are 

examined in this section. To illustrate the effects of multilook 
averaging, classification based on single look was compared 
with the results based on four-look averaging, results of which 
have been shown in the previous sections. The accuracy of 

(b) 

Fig. 5 .  
(b) crosspolarized signature. 

C-band polarization signature (FY ice). (a) Copolarized signature; 

(b) 

Fig. 6. 
(b) crosspolarized signature. 

C-band polarization signature (MY ice). (a) Copolarized signature; 
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TABLE XI1 

FOUR-LOOK AND SINGLE-LOOK CLASSIFICATIONS 
COMPARISON OF ACCURACIES BETWEEN 

Fig. 8. LVQ and iterative ML classification of Beaufort sea ice (with 
single-look) Red: Boundary, Green: MY, and Blue: FY (from left to right, 
P-, L, and C-band images). 

Fig. 7. LVQ classification of Beaufort sea ice (with single-look) Red: 
Boundary, Green: MY, and Blue: FY (from left to right, P-, L, and C-band 
images). 

the classifier with single-look averaging is shown in Table 
XI1 along with that with four-look averaging. The single-look 
images classified by LVQ, and LVQ with the iterative ML 
method are shown in Figs. 7 and 8. It is clear that the single 
look method displays very poor performance in the L- and 
P-band images. Due to the speckle in single look images, it 
is difficult to identify the MY region, especially in the lower 
part of the image. For the C-band image, the total accuracy 
did not change as much. But from the processed image it 
was found that these three classes are clearly more separated 
in the four-look image than in the single-look image. From 
this experiment, it was confirmed that four-look averaging 
is capable of reducing the effects of speckle, and therefore 
improves the classification accuracy. 

V. CONCLUSION 
An unsupervised neural network has been described and 

applied to the classification of sea ice in SAR imagery. LVQ 
displayed superior performance when compared to the Migrat- 
ing Means method. To further improve the performance, a new 
algorithm was introduced which employed LVQ to perform the 
initial clustering and improved the results by an iterative ML 
method. This method was seen to improve the performance of 
the unsupervised LVQ method significantly, while preserving 
the advantages of automatic operation inherent in unsupervised 
techniques. The results showed that L- and P-band images have 
similar characteristics, while the C-band image is substantially 
different from the lower frequency ones. The upper structures 
of the sea ice were more obvious in the C-band image, and 
the internal structures of the sea ice were more prevalent 
in the L- and P-band images. It was found that the C-band 

image had the most distinct features separating classes. The 
factors contributing to the classification were analyzed, and 
it was found that the dominant feature is the intensity of 
HH in the L- and P-band images, while fully polarimetric 
classification helped in the C-band image and gave the optimal 
result. In addition, it was found that multilook averaging was 
not only necessary in the training phase, but also in the 
classification phase, to stabilize the training, and to suppress 
the misclassification caused by the effects of speckle. 
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